Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.05.451222

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting neutralizing antibody responses against multiple CoVs. Because of the phylogenetic similarity to humans, rhesus macaques are an animal model of choice for many virus-challenge and vaccine-evaluation studies, including SARS-CoV-2. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein generates potent receptor binding domain cross- neutralizing antibody (nAb) responses to both SARS-CoV-2 and SARS-CoV-1, in contrast to human infection or vaccination where responses are typically SARS-CoV-2-specific. Furthermore, the macaque nAbs are equally effective against SARS-CoV-2 variants of concern. Structural studies show that different immunodominant sites are targeted by the two primate species. Human antibodies generally target epitopes strongly overlapping the ACE2 receptor binding site (RBS), whereas the macaque antibodies recognize a relatively conserved region proximal to the RBS that represents another potential pan-SARS-related virus site rarely targeted by human antibodies. B cell repertoire differences between the two primates appear to significantly influence the vaccine response and suggest care in the use of rhesus macaques in evaluation of vaccines to SARS-related viruses intended for human use. ONE SENTENCE SUMMARYBroadly neutralizing antibodies to an unappreciated site of conservation in the RBD in SARS- related viruses can be readily induced in rhesus macaques because of distinct properties of the naive macaque B cell repertoire that suggest prudence in the use of the macaque model in SARS vaccine evaluation and design.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.03.433558

ABSTRACT

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Subject(s)
COVID-19 , Weight Loss
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.16.431310

ABSTRACT

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2 and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non or weakly neutralizing (“off-target”) antibodies. Using our recently developed electron microscopy epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Subject(s)
HIV Infections
SELECTION OF CITATIONS
SEARCH DETAIL